Solar Water Heater

Heating collectors capture and retain heat from the sun and transfer this heat to a liquid. Solar thermal heat is trapped using the “greenhouse effect,” in this case is the ability of a reflective surface to transmit short wave radiation and reflect long wave radiation. Heat and infrared radiation (IR) are produced when short wave radiation light hits a collector’s absorber, which is then trapped inside the collector. Fluid, usually water, in contact with the absorber collects the trapped heat to transfer it to storage.

Solar Water
Solar Hot Water (Solar Thermal)
Save Money With Free Hot Water from the Sun.
Harness the solar energy is solar hot water system

Two principles govern solar thermal collectors. First, any hot object eventually looses its heat back to the environment. The efficiency of a solar thermal collector is directly related to heat loss, mainly from convection and radiation. Thermal insulation is used to slow down heat loss from a hot object to its environment. Second, heat loss is more rapid if the temperature difference between a hot object and its environment is larger, in this case between the temperature of the collector surface and the ambient temperature. (But the same goes for transferring heat from the collector to the fluid, a larger difference between the collector and the liquid, the more heat is transferred.) The most basic approach to solar heating of water is to simply put a tank filled with water into the sun. The heat from the sun would heat the metal tank and the water inside. This was how the very first SWH systems worked more than a century ago. However, this setup would be inefficient because there is little to limit the heat loss from the tank. Adding an insulated box around the tank, and adding glass above the top where the sun comes in would do a lot to retain heat.

A more common collector is called a flat plate collector. It has a large, flat surface area (absorber) to maximize exposure to the sun, and has small tubes bonded to it. Fluid runs through the tubes, collecting the heat from the absorber. The sides and bottom of the collector are well-insulated, and glass on top completes the insulation. This is quite simple, but there are some very technical factors involved in making the collector as efficient as possible. One is the coating on the absorber, which is specially formulated to both absorb as much heat as possible, and to radiate back out as little heat as possible. Another is the glass, which is high-iron and specially coated to let as much light energy as possible through and to also prevent as much heat loss as possible. Another popular type of collector is called evacuated tube, which has a long, skinny absorber that is inside a glass tube. The tube has the air evacuated out of it, which makes it highly insulated—not too different from a thermos used to keep drinks hot. The final type of collector is a parabolic dish or tray, which increases heat potential by concentrating sunlight onto a small absorber. These are very rare in home water heating systems, and more commonly used in utility-scale systems to create steam which runs turbines to make electricity.

Residential Benefits

Utility costs are skyrocketing.
Solar for your home slashes your electric bill.
Solar Means Savings – Now and Forever.
Rebates and Tax Credits mean going solar is now affordable.
Solar for your home means increase property value.
Going Solar is Clean and Green. Solar electric systems reduce demand for power from the grid.
Less dependence on polluting fossil fuels utilities burn to generate electricity
Lowered carbon footprint.